Existence, uniqueness and comparison results for nonlinear boundary value problems involving a deviating argument
نویسندگان
چکیده
منابع مشابه
Existence and Local Uniqueness for Nonlinear Lidstone Boundary Value Problems
Higher order upper and lower solutions are used to establish the existence and local uniqueness of solutions to y = f(t, y, y′′, . . . , y(2n−2)), satisfying boundary conditions of the form gi(y(0), y(2i−2)(1))−y(2i−2)(0) = 0, hi(y(0), y(2i−2)(1))−y(2i−2)(0) = 0, 1 ≤ i ≤ n.
متن کاملExistence and Uniqueness Results for Perturbed Neumann Boundary Value Problems
Academic Editor: Irena Rachůnková Copyright q 2010 J. Zhang and C. Zhai. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Using a fixed point theorem of general α-concave operators, we present in this paper criteria which guarantee...
متن کاملExistence and uniqueness of solutions for p-laplacian fractional order boundary value problems
In this paper, we study sufficient conditions for existence and uniqueness of solutions of three point boundary vale problem for p-Laplacian fractional order differential equations. We use Schauder's fixed point theorem for existence of solutions and concavity of the operator for uniqueness of solution. We include some examples to show the applicability of our results.
متن کاملExistence and multiplicity results for nonlinear boundary value problems
This paper studies the existence of positive solutions for a class of boundary value problems of elliptic degenerate equations. By using bifurcation and fixed point index theories in the frame of approximation arguments, the criteria of the existence, multiplicity and nonexistence of positive solutions are established. c © 2007 Elsevier Ltd. All rights reserved.
متن کاملEXISTENCE RESULTS FOR NONLINEAR IMPULSIVE qk-INTEGRAL BOUNDARY VALUE PROBLEMS
u(T ) = ∑m i=0 ∫ ti+1 ti g(s, u(s)) dqis, where Dqk are qk-derivatives (k = 0, 1, 2, . . . ,m), f, g ∈ C(J ×R, R), Ik ∈ C(R,R), J = [0, T ](T > 0), 0 = t0 < t1 < · · · < tk < · · · < tm < tm+1 = T , J ′ = J\{t1, t2, . . . , tm}, and ∆u(tk) = u(t + k ) − u(t − k ), u(t + k ) and u(t − k ) denote the right and the left limits of u(t) at t = tk (k = 1, 2, . . . ,m) respectively. The study of q-dif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1981
ISSN: 0022-0396
DOI: 10.1016/0022-0396(81)90041-3